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REVIEW: ENGINEERING

Advanced Technology Paths to Global Climate
Stability: Energy for a Greenhouse Planet
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Stabilizing the carbon dioxide—induced component of climate change is an energy
problem. Establishment of a course toward such stabilization will require the devel-
opment within the coming decades of primary energy sources that do not emit carbon
dioxide to the atmosphere, in addition to efforts to reduce end-use energy demand.
Mid-century primary power requirements that are free of carbon dioxide emissions
could be several times what we now derive from fossil fuels (~ 10" watts), even with
improvements in energy efficiency. Here we survey possible future energy sources,
evaluated for their capability to supply massive amounts of carbon emission—free
energy and for their potential for large-scale commercialization. Possible candidates
for primary energy sources include terrestrial solar and wind energy, solar power
satellites, biomass, nuclear fission, nuclear fusion, fission-fusion hybrids, and fossil
fuels from which carbon has been sequestered. Mon-primary power technologies that
could contribute to climate stabilization include efficiency improvements, hydrogen
production, storage and transport, superconducting global electric grids, and gecengi-
neering. All of these approaches currently have severe deficiencies that limit their
ability to stabilize global climate. We conclude that a broad range of intensive
research and development is urgently needed to produce technological options that
can allow both climate stabilization and economic development.
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GDP = C x (E/C) x (GDP/E)

* To increase economic productivity (GDP) without increasing
carbon emissions (C), we must increase

« The amount of energy produced per unit carbon emitted (E/C)

« The economic productivity of energy (GDP/E)

 We need a research and development program aimed at increasing
GDP in a carbon-constrained world



CO, volumes

* In year 2000, we produced
« ~25,000 km? of gaseous CO, per year (at STP)
« ~25 km?3 per year compressed to liquid CO, density

« By 2100, perhaps
« ~100,000 km? gaseous CO, per year
« ~100 km3 liquid CO,, per year
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Carbon-emissions-free primary power
required for CO, stabilization
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Solutions must work 3%
for the developing w

Per capita GDP in developing =0
world is expected to lag USA
Year | USA | South | Africa 200 |
(k$) |-€ast | (k$)
Asia |
(k$) 150

1990 | 23 0.9 0.7
2050 |68 10 2.3
2100 | 119 |45 7.6

GDP (trillions of dollars)

Yet, GDP growth in devel
world is expected to exce

m Southeast Asia
O Latin America
m Africa

oz Middle East

m Centrally planned Asia

o Centrally planned Europe
DO OECD-A

mOECD-W

zUSA

; 0 —
that in USA, OECD 1990

IS92a economic assumptions



Three strategies to climate stabilization

Climate
stabilization

Diminish Develop

Sequester :
end-use non-fossil
carbon

demand energy sources




Three strategies to climate stabilization

Climate
stabilization

Develop
non-fossil
energy sources

Sequester
carbon

We need to work hard on all three strategies



Energy intensity decline and carbon-emissions-
free power required to stabilize at 2 x CO,
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The ftransportation sector

Without structural changes, we can only obtain a factor of 2 improvement in the transportation sector
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Economic productivity of energy use (GDP/E)

* Improve efficiency of cars, homes, power plants, etc
(device efficiency)

* Improve economic value generated per unit energy
consumed (system efficiency)



Three strategies to climate stabilization

Climate
stabilization

Develop
non-fossil
energy sources

Sequester
carbon

We need to work hard on all three strategies



Renewable Energy
densities and rates for 10 TW,

« Wind energy
e 4 W/m? = 800,000 km?/(10 TW,)
e Add ~20 km? / day for 100 years
* 1% coverage with turbines
* 100 turbines averaging 1 MW delivered per day
« Solar photovoltaic
« ~200 Wim? @ ~20% efficiency = 80,000 km?/(10 TW,)
« Add ~ 2 km?/ day for 100 years

 Biomass energy
« ~200 W/im? @ 2% efficiency = 2,500,000 km?/(10 TW,)
« Add ~70 km? / day for 100 years



Wind power

* Need >3 million mega-wind-turbines for 10 TW,
* 100 per day added for next 100 years

 Intermittancy, Storage, Distribution

Nordex 2.5 MW
80 m rotor diam

Percent Land nre A,

1-20 S ., . *

21-50 ,_( e
£1.80 Percentage of area with

81-100 > 300 W/m? wind (6.4 m/s)




Renewables:
Storage and distribution remain challenges

Hydrogen energy storage and distribution

2 Renewable
electrolyzer | electricity and

photovoltaic \Hzﬂ
Q‘? arra}rs
\ hydrogen
| \ "

wind farms

aflaa:tric

power
conditioning
to hydrogen
pipelines and
storage

Platinum requirement for high-density electrolyzers / fuel cells
to produce 10 TW = 30 x today’s global platinum mining rate



Renewables:
Storage and distribution remain challenges

Hydrogen energy storage and distribution
Superconducting long-distance electricity transmission
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electric
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Renewables:
Storage and distribution remain challenges

Superconducting long-distance electricity transmission

Antarctica

Icosahedron: An
equilateral-triangle-
faced solid that
reduces map projection
errors

Buckminster Fuller's Global Electrical Grid




Electricity transmission and production

In space

Transmission of power from Generation of power in-orbit,
one point to another transmission to Earth by microwave
power  orbiting microwave Sun 4— orbiting solar
source reflector arrays with
b“ T microwave
: trans mitters
: ‘ {— consumer
‘h-r

reflectors

Earth-orbiting / vd
microwave \

Generation of power on the Moon,
transmission to Earth by microwave beams
*Assembled mainly from lunar materials

solar reflectors :

in lunar orbit




Three strategies to climate stabilization

Climate
stabilization

Develop
non-fossil
energy sources

Sequester
carbon

We need to work hard on all three strategies



Carbon sequestration strategies

Sequester
carbon

Source Sink
options options
Geologic Ocean Carbonate Ocean
injection injection weathering fertilization
Carbon black| | Silicate Land Air
storage weathering biosphere removal




Carbon sequestration:
A carbon-emission-free fossil-fuel economy

Fossil | Energy content |Carbon content (Efuel/C) (E/C) Sequestration
fuel [TW-yr] [GTC] [TW-yr/GtC] | [TW-yriGtC] | rate [GtClyr]
Gas 1200 570 2.1 1.9-1.6 5-6
Oil 1200 750 1.6 14-1.2 7-8
Coal 4800 3690 1.3 1.2-1.0 9-10
central Carbon sequestration rates to produce j
bi power plants 10 TW CO,-emission-free from fossil fuels
iomass

‘J.@ /—magnesium carbonate bricks
¥

«——CO2

fuel electricity
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Non-fossil energy strategies

Develop
non-fossil

energy sources

Solar PV Wind Geothermal LWR Fllisten Tokamaks
breeder
Waves & Hvdro He-cooled| | Advanced Advanced fuel cycles
currents y pebble bed| | designs | | and confinement schemes




Fission power

Comventlonal nuclear Pebble bed modular
fisslon reactor nuclear fisglon reactor
steam hellum
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reactor contalnment condensor reactor contalnment  recuperator water
e sas) vessel coolant

Known uranium reserves can provide 10 TW of power for less than 30 years
--> breeder reactors

Inherently safe reactor designs Proliferation
Waste disposal Advanced breeding concepts
Recovery of 235U from low-grade ores or seawater



Fusion

transformer
winding
(primary
circuit)
o\

resultant hellca
magnetic fleld

7

Tokamak magnetic
confinement

iron transformer

Despite recent advances,
fusion is unlikely

to be a power source

In the next 50 years

GOI'E/ torOid/alt!Leilg

poloidal
magnetic
fleld

toroidal
magnetic
fleld

Fusion could be a
neutron source
for hybrid fusion/
fission breeders




Conclusions

Very large amounts of carbon-emissions-free power will be needed to stabilize
climate

Only a portfolio of technologies and approaches can produce the tens of
terawatts (TW,) of carbon-emissions-free primary power needed in the next
decades for economic growth

We must research and develop ways to —

* Improve the economic productivity of our energy use

« Get more energy from renewable resources

« Store energy and transmit it over long distances

» Sequester carbon from fossil-fuels

* Have safe and environmentally acceptable fission power

» Get energy from fusion, and other advanced energy sources
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